skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lang, Tian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Future healthcare systems require smart hospitals with system-wide wireless communications and positioning functions, which cannot be facilitated by existing radio-frequency (RF) wireless technologies. In this paper, we present integrated design of a novel low-complexity received signal strength (RSS) based hybrid visible light communication (VLC) and indoor positioning (VLP) system. This VLC/VLP tracking system consist of host optical transceivers embedded in existing light-emitting diode (LED) bulbs and user-end optical tags, which interface with the existing 120AVC power wiring in a building. The new hybrid VLC/PLC tracking system was validated by simulation and experimentation. This LED VLC tracking system will enable smart hospital operations to modernize next-generation intelligent healthcare systems 
    more » « less
  2. null (Ed.)
    In this paper, we present an in-depth study of light emitting diode (LED) based indoor visible light communication positioning system using a smart phone camera with rolling shutter effect, aiming for smart and connected hospital applications. The LED transmits periodical signals with different frequencies as its optical tags. The camera exploits the rolling shutter effect to detect the fundamental frequency of optical signals. The roles of camera parameters determining the rolling effect are studied and a technique to measure the camera readout time per column is presented. Factors limiting the detectable optical frequency range is explained based on the discussion of rolling shutter mechanism. The Fourier spectrum based frequency resolution, which determines the tracking capacity, is analyzed. 
    more » « less
  3. null (Ed.)